i

Extensión de la convocatoria N°68, semitemático de Revista de Investigaciones Geográficas: una mirada desde el Sur: Triple crisis planetaria: una mirada desde la justicia ambiental.

Se invita a enviar los artículos completos mediante la plataforma oficial de la revista hasta el 15 de octubre de 2024. Para más información, por favor revisar este enlace

Assessing the Impacts of a Multi-Year Drought on Water Resources and Agriculture in the Aconcagua River Basin of Chile

Autores/as

Resumen

The Aconcagua watershed in Central Chile has experienced severe drought conditions for the past thirteen years, receiving only three-fifths of its average precipitation, marking the longest drought on record. Declining rainfall has led to widespread water shortages for agriculture and human consumption, while warmer temperatures have further reduced water availability, worsening the drought's impacts. This study examines the combined effects of decreasing precipitation, reduced streamflow, warmer temperatures, and changing agricultural land use patterns to assess the environmental impacts of the drought in the Aconcagua watershed. Trend analysis reveals that the drought, coupled with rising temperatures, has depleted the snowpack in the Andes, reducing river discharge and exacerbating a drying trend that diminishes regional water availability. Agriculture in the region, which depends almost exclusively on river discharge, has been severely impacted, with an average streamflow reduction of 59% since 2010 affecting arable land. Deficient irrigation infrastructure and inefficient water governance, combined with regional drying trends favored by climate change, are likely to worsen the situation. Addressing the drought in Chile requires a comprehensive and coordinated response from the government, civil society, and the private sector. This response should include measures to promote sustainable water use and conservation, support for affected communities and industries, and efforts to address the underlying drivers of the drought, including climate change and unsustainable practices.

Palabras clave:

Andes, Aconcagua Basin, agricultural expansion, climate change, water resources, water scarcity

Referencias

Acuña, V. & Tironi, M. (2022). Extractivist droughts: Indigenous hydro social endurance in Quillagua, Chile. The Extractive Industries and Society, 9, 101027. https://doi.org/10.1016/j.exis.2021.101027

Aggarwal, A., Frey, H., McDowell, G., Drenkhan, F., Nusser, M., Racoviteanu, A. & Hoelzle, M. (2022) Adaptation to climate change-induced water stress in major glacierized mountain regions. Clim Dev, 14(7), 665-677. https://doi.org/10.1080/17565529.2021.1971059

Ahmad, M.D., Masih, I. & Giordano, M. (2014). Constraints and opportunities for water savings and increasing productivity through Resource Conservation Technologies in Pakistan. Agri Ecosyst Environ, 187, 106-115. https://doi.org/10.1016/j.agee.2013.07.003

Aitken, D., Rivera, D., Godoy-Faúndez, A. & Holzapfel, E. (2016). Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability, 8(2), 128. https://doi.org10.3390/su8020128

Aliyari, F., Bailey, R. T. & Arabi, M. (2021) Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Sci Total Environ, 788, Article 147717. https://doi.org/10.1016/j.scitotenv.2021.147717

Bauer, C. J. (1998). Slippery Property Rights: Multiple Water Uses and the Neoliberal Model in Chile, 1981-1995. Nat Resour Journal, 38(1), 109-155. http://www.jstor.org/stable/24888446

Bauer, C. J. (2005). In the image of the market: the Chilean model of water resources management. Int J Water, 3, 146-165. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=260dc75b1fcdaebc99d1e294e801c8c91343e29f

Bauer, C. J. (2015). Water conflicts and entrenched governance problems in Chile’s market model. Water Alternatives, 8(2), 147-172. https://www.water-alternatives.org/index.php/all-abs/285-a8-2-8/file

Beniston, M., & Stoffel, M. (2014). Assessing the impacts of climatic change on mountain water resources. Sci Total Environ, 493, 1129-1137. https://doi.org/10.1016/j.scitotenv.2013.11.122

Boisier, J. P., Álvarez‐Garreton, C., Cordero, R. R., Damian, A., Gallardo, L., Garreaud, R. D., et al. (2018). Anthropogenic drying in Central‐Southern Chile evidenced by long-term observations and climate model simulations. Elementa: Sci Anthrop, 6, 74. https://doi.org/10.1525/elementa.328

Boisier, J. P., Rondanelli, R., Garreaud, R. D. & Muñoz, F. (2016). Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys Res Lett, 43(1), 413- 421 https://doi:10.1002/2015GL067265

Bown, F., A. Rivera, & Acuña, C. (2008). Recent glacier variations at the Aconcagua Basin, central Chilean Andes. Ann Glaciol, 48, 43-8. https://doi:10.3189/172756408784700572

Bozkurt, D., Rojas, M., Boisier, J. P. & Valdivieso, J. (2017). Climate change impacts on hydroclimatic regimes and extremes over Andean basins in central Chile. Hydrol Earth Syst Sci Discuss, 1-29. https://doi.org/10.5194/hess-2016-690

Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., et al. (2014). Increasing frequency of extreme el Niño events due to greenhouse warming. Nat Clim Change, 4, 111-116. https://doi.org/10.1038/nclimate2100

Carrasco, J., Casassa, G., & Quintana, J. (2005). Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrol Sci J, 50(6), 933-948. doi.org/10.1623/hysj.2005.50.6.933

Carrasco, J., Osorio, R., & Casassa, G. (2008). Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. J Glaciol, 54(186), 538-550. https://doi:10.3189/002214308785837002

CCG-UC. (2022). Escenarios climáticos para Chile: evidencia desde el Sexto Informe del IPCC. Centro de Cambio Global, Universidad Católica de Chile.

Center for Climate and Resilience Research. (2019). La Megasequía 2010-2019: una lección para el futuro. Informe a la Nación. www.cr2.cl/megasequia

Centro de Agricultura y Medio Ambiente. (2008). Análisis de vulnerabilidad silvoagropecuaria en Chile frente a escenarios de Cambio Climático. Universidad de Chile, Facultad de Ciencias Agronómicas.

CIREN-ODEPA. (2002). Catastro frutícola, V Región, principales resultados. Centro de Información de Recursos Naturales and Oficina de Estudios y Políticas Agrarias.

CIREN-ODEPA. (2008). Principales resultados catastro frutícola. Región de Valparaíso, diciembre 2008. Centro de Información de Recursos Naturales and Oficina de Estudios y Políticas Agrarias.

CIREN-ODEPA. (2014). Catastro frutícola principales resultados. Región de Valparaíso, julio 2014. Centro de Información de Recursos Naturales and Oficina de Estudios y Políticas Agrarias.

CIREN-ODEPA. (2017). Catastro Frutícola principales resultados. Región de Valparaíso, julio 2017. Centro de Información de Recursos Naturales and Oficina de Estudios y Políticas Agrarias.

CIREN. (2020). Resultados y Aspectos Económicos de Proyecciones Climáticas para Especies Frutales en la Cuenca del Aconcagua. Centro de Información de Recursos Naturales.

Corripio, J.G., Purves, R.S. & Rivera, A. (2008). “Modeling climate change impacts on mountain glaciers and water resources in the central dry Andes. En B. Orlove, E. Wiegandt & B. (Eds.), Darkening peaks: glacier retreat, science, and society (pp. 126-135). University of California.

Cortés, G., Vargas, X., & McPhee, J. (2011). Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. J Hydrol, 405(1-2), 93-109. https://doi:10.1016/j.jhydrol.2011.05.013

Coudrain, A., Francou, B., & Kundzewicz, Z. W. (2005). Glacier shrinkage in the Andes and consequences for water resources. Hydrol Sci J, 50(6), 925-932. https://doi.org/10.1623/hysj.2005.50.6.925

Crespo S.A, Lavergne C., Fernandoy F., Muñoz A.A., Cara L., & Olfos-Vargas S. (2020). Where Does the Chilean Aconcagua River Come from? Use of Natural Tracers for Water Genesis Characterization in Glacial and Periglacial Environments. Water, 12(9), 2630. https://doi.org/10.3390/w12092630

Cutter, S.L., Boruff, B.J. & Shirley, W.L. (2003). Social Vulnerability to Environmental Hazards. Soc Sci Q, 84(2), 242-261. https://doi.org/10.1111/1540-6237.8402002

Dai, A. (2011). Drought under global warming: a review. WIREs Clim Change, 2(1), 45-65. https://doi.org/10.1002/wcc.81

Dai, A. (2013). Increasing drought under global warming in observations and models. Nat Clim Change, 3, 52-58. https://doi.org/10.1038/nclimate1633

Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. (2014). Global crop yield response to extreme heat stress under multiple climate change futures. Environ Res Lett, 9, 034011. https://dx.doi.org/10.1088/1748-9326/9/3/034011

DGA. (2007). Estimaciones de demanda de agua y proyecciones futuras. Zona II. Regiones V a XII Y Región Metropolitana. Dirección General de Aguas, Ministerio de Obras Públicas.

DGA. (2015a). Plan de infraestructura para sequía. Dirección General de Aguas, Ministerio de Obras Públicas.

DGA. (2015b). Atlas del agua. Chile 2016. Dirección General de Aguas, Ministerio de Obras Públicas.

DGA. (2020). Plan estratégico de gestión hídrica en la cuenca de Aconcagua. Dirección General de Aguas, Ministerio de Obras Públicas.

Di Castri, F., & Hajek, E. R. (1976). Bioclimatología de Chile. Vicerrectoría Académica de la Universidad Católica de Chile.

Diaz, V., Corzo Perez, G. A., Van Lanen, H. A. J., Solomatine, D., & Varouchakis, E. A. (2020). An approach to characterise spatio-temporal drought dynamics. Adv Water Resour, 137. https://doi.org/10.1016/j.advwatres.2020.103512

Diffenbaugh, N. S., & Field, C. B. (2013). Changes in ecologically critical terrestrial climate conditions. Science, 341(6145), 486-492. https://doi.org/10.1126/science.1237123

Dirección Meteorológica de Chile. (2019). Monitoreo de la sequía meteorológica en Chile. Oficina de Servicios Climatológicos.

DOH. (2015). Plan integral de obras hidráulicas. Valle del Aconcagua, Región de Valparaíso. Ministerio de Obras Públicas, Dirección de Obras Hidráulicas.

Donoso, G. (2015a). “Chilean Water Rights Markets as a Water Allocation Mechanism,”. En M. Lago, J. Mysiak, C. Gómez, G. Delacámara & A. Maziotis (Eds.), Use of Economic Instruments in Water Policy. Global Issues in Water Policy (pp. 265-278). Springer. https://doi.org/10.1007/978-3-319-18287-2_19

Donoso, G. (2015b). Water pricing in Chile: Decentralisation and market reforms. En A. Dinar, V. Pochat & J. Albiac-Murillo (Eds.), Water pricing experiences and innovations (pp. 83-96). Springer International Publishing. https://doi.org/10.1007/978-3-319-16465-6_5

Donoso, G. (2021). Management of Water Resources in Agriculture in Chile and its Challenges. International journal of agriculture and natural resources, 48(3), 171-185. https://dx.doi.org/10.7764/ijanr.v48i3.2328

Duran-Llacer, I., Munizaga, J., Arumí, J., Ruybal, C., Aguayo, M., Sáez-Carrillo, K., Arriagada, L., et al. (2020). Lessons to Be Learned: Groundwater Depletion in Chile’s Ligua and Petorca Watersheds through an Interdisciplinary Approach. Water, 12(9), 2446. http://dx.doi.org/10.3390/w12092446

Escobar, F., & Aceituno, P. (1998). Influencia del fenómeno ENSO sobre la precipitación nival en el sector Andino de Chile Central durante el invierno. Bulletin de l'Institut Français d'Études Andines, 27(3), 753-759. http://dx.doi.org/10.3406/bifea.1998.1328

Falkenmark, M. (1989). The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being Addressed? Ambio, 18(2), 112-118. http://www.jstor.org/stable/4313541

Falvey, M., & Garreaud, R. D. (2009). Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979-2006). J Geophys Resear, 114(D4). https://doi.org/10.1029/2008JD010519

FAO. (2008). Climate Change and Food Security: A Framework Document. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/forestry/15538- 079b31d45081fe9c3dbc6ff34de4807e4.pdf

Fundación Amulén. (2019). Pobres de Agua: Radiografía del agua rural en Chile. Centro de Cambio Global UC and Centro de Derecho y Gestión de Aguas UC. https://www.fundacionamulen.cl/wp-content/uploads/2020/07/Informe_Amulen.pdf

Garreaud, R. D., Alvarez-Garreton, C., Barichivich, J., Boisier, J. P., Christie, D., Galleguillos, M., LeQuesne, C., McPhee, J., & Zambrano-Bigiarini, M. (2017). The 2010-2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci, 21(12), 6307-6327. https://doi.org/10.5194/hess-21-6307-2017

Garreaud, R. D., Boisier, J. P., Rondanelli, R., Montecinos, A., Sepúlveda, H. H., & Veloso-Aguila, D. (2020). The Central Chile Mega Drought (2010-2018): A climate dynamics perspective. Int J Climatol, 40(1), 421-439. https://doi.org/10.1002/joc.6219

Gobierno Regional de Valparaíso. (2019). Lineamientos estratégicos de política pública e iniciativas para el desarrollo y sostenibilidad hídrica de la Región de Valparaíso. Consejo para el desarrollo y la sostenibilidad hídrica de la Región de Valparaíso.

González-Reyes, Á., McPhee, J., Christie, D. A., Le Quesne, C., Szejner, P., Masiokas, M. H., Villalba, R., Muñoz, A. A., & Crespo, S. (2017). Spatiotemporal Variations in Hydroclimate across the Mediterranean Andes (30°-37°S) since the Early Twentieth Century. Journal of Hydrometeorology, 18(7), 1929-1942. https://doi.org/10.1175/JHM-D-16-0004.1

Haile, G. G., Tang, Q., Li, W., Liu, X., & Zhang, X. (2020). Drought: Progress in broadening its understanding. Wiley Interdisciplinary Reviews: Water, 7(2), e1407. https://doi.org/10.1002/wat2.1407

Hearne, R., Donoso, G. (2014). Water Markets in Chile: Are They Meeting Needs? En K.W. Easter & Q. Huang (Eds.), Water Markets for the 21st Century. Global Issues in Water Policy (pp.103-126). Springer. https://doi.org/10.1007/978-94-017-9081-9_6

IANIGLA-CONICET/(CR)2. (2022). Observatorio de Nieve en los Andes de Argentina y Chile. http://www.ianigla.gob.ar/observatorio-de-nieve/

INDAP. (2023). Por una Agricultura Familiar Campesina e Indígena más inclusiva, sostenible y resiliente. Instituto de Desarrollo Agropecuario.

INE. (1997). VII Censo Nacional Agropecuario y Forestal. Instituto Nacional de Estadísticas.

INE. (2007). VI Censo Nacional Agropecuario y Forestal. Instituto Nacional de Estadísticas.

INE. (2018). Compendio Estadístico 2018. Instituto Nacional de Estadísticas.

INE. (2020). Estadísticas de la Región de Valparaíso. Instituto Nacional de Estadísticas.

INE. (2022). VIII Censo Nacional Agropecuario y Forestal. Instituto Nacional de Estadísticas.

Intergovernmental Panel on Climate Change. (2019). Special Report: Climate Change and Land. Cambridge University Press.

Intergovernmental Panel on Climate Change. (2022). AR6 Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.

Janke, J. R., Ng, Sam., & Bellisario, A. (2017). An inventory and estimate of water stored in firn fields, glaciers, debris-covered glaciers, and rock glaciers in the Aconcagua River Basin, Chile. Geomorphology, 296(1), 142-152. https://doi.org/10.1016/j.geomorph.2017.09.002

Lobell, D. B., Burke, M. B., Tebaldi, C., Mastrandrea, M. D., Falcon, W. P., & Naylor, R. L. (2014). Prioritizing climate change adaptation needs for food security in 2030. Science, 319(5863), 607-610. https://doi.org/10.1126/science.1152339

Malmros, J., Mernild, S., Wilson, R., Yde, J., & Fensholt, R. (2016). Glacier area changes in the central Chilean and Argentinean Andes 1955-2013/14. Journal of Glaciology, 62(232), 391-401. https://doi.org/10.1017/jog.2016.43

Marengo, J. A., Jones,R., Alvesa, L. M., & Valverde, M. C. (2009). Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int. J. Climatol, 29(15), 2241-2255. https://doi.org/10.1002/joc.1863

Martel-Cea, A., Maldonado, A., de Porras, M. E., Muñoz, P., Maidana, N. I., Massaferro, J., & Schittek, K. (2023). A multiproxy approach to reconstruct the Late Holocene environmental dynamics of the semiarid Andes of central Chile (29°S). Frontiers in Ecology and Evolution, 11, Article 1227020. https://doi.org/10.3389/fevo.2023.1227020

Martínez, C., Fernández, A., & Rubio, P. (2012). Caudales y variabilidad climática en una cuenca de latitudes medias en Sudamérica: Río Aconcagua, Chile Central (33°). Boletín de la Asociación de Geógrafos Españoles, (58), 227-248. https://doi.org/10.21138/bage.2066

Masiokas, M. H., Villalba, R., B. H. Luckman, B. H., Le Quesne, C. & Aravena, J. C. (2006). Snowpack Variations in the Central Andes of Argentina and Chile, 1951-2005: Large-Scale Atmospheric Influences and Implications for Water Resources in the Region. Journal of Climate, 19(24), 6334-6352. https://doi.org/10.1175/JCLI3969.1

McCarthy, M., Meier, F., Fatichi, S., Stocker, B. D., Shaw, T. E., Miles, E., et al. (2022). Glacier contributions to river discharge during the current Chilean megadrought. Earth's Future, 10(10), e2022EF002852. https://doi.org/10.1029/2022EF002852

Melo, O., Vargas, X., Vicuña, S., Meza, F., & McPhee, J. (2010). Climate Change Economic Impacts on Supply of Water for the M and I Sector in the Metropolitan Region of Chile. En Watershed Management (pp. 159-170). https://doi.org/10.1061/41143(394)15

Meza, F. (2005). Variability of Reference Evapotranspiration and Water Demands. Association To ENSO in the Maipo River Basin, Chile. Global and Planetary Change, 47(2-4), 212-220. https://doi.org/10.1016/j.gloplacha.2004.10.013

Meza, F. (2013). Recent trends and ENSO influence on droughts in Northern Chile: An application of the Standardized Precipitation Evapotranspiration Index. Weather and Climate Extremes, 1, 51-58. https://doi.org/10.1016/j.wace.2013.07.002

Meza, I., Siebert, S., Döll, P., Kusche, J., Herbert, C., Eyshi Rezaei, E., Nouri, H., Gerdener, H., Popat, E., Frischen, J., Naumann, G., Vogt, J. V., Walz, Y., Sebesvari, Z., & Hagenlocher, M., (2020). Global-scale drought risk assessment for agricultural systems. Nat. Hazards Earth Syst. Sci, 20, 695-712, https://doi.org/10.5194/nhess-20-695-2020

MINAGRI. (2016). Más y mejor riego para Chile: Diagnostico para desarrollar plan de riego en cuenca de Aconcagua, Informe Final. Ministerio de Agricultura.

Ministerio del Interior y Seguridad Pública. (2015). Política Nacional para los Recursos Hídricos 2015.

Montecinos, A., & Aceituno, P. (2003). Seasonality of the ENSO-Related Rainfall Variability in Central Chile and Associated Circulation Anomalies. Journal of Climate, 16(2), 281-296. https://doi.org/10.1175/1520-0442(2003)016<0281:SOTERR>2.0.CO;2

MOP. (2015). Determinación de la disponibilidad de aguas subterráneas en el Valle del Río Aconcagua. Ministerio de Obras Públicas.

MOP. (2016). Chile cuida su agua: Estrategia nacional de recursos hídricos 2012 - 2025. Ministerio de Obras Públicas.

Muñoz, A.A., Klock-Barría, K., Alvarez-Garreton, C., Aguilera-Betti, I., González-Reyes, Á., Lastra, J.A., et al. (2020). Water crisis in Petorca Basin, Chile: The combined effects of a mega-drought and water management. Water, 12(3), 648. https://doi.org/10.3390/w12030648

ODEPA. (2016). Región de Valparaíso: Información regional 2016. Oficina de Estudios y Políticas Agrarias.

ODEPA. (2019). Chilean Agricultural Overview. Oficina de Estudios y Políticas Agrarias.

Oertel, M., Meza, F. J., & Gironás, J. (2020). Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile. Hydrological Processes, 34(2), 159-174. https://doi.org/10.1002/hyp.13596

Ohlanders, N., Rodríguez, M., & McPhee, J. (2013). Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences, 17(3), 1035-1050. https://doi.org/10.5194/hess-17-1035-2013

PANCD-Chile. (2016). Actualización de Cifras y Mapas de Desertificación; degradación de la tierra y sequía en chile a nivel de comunas PANCD-Chile 2016-2030. Programa de acción nacional contra la desertificación, Sud-Austral Consulting SpA.

Panez-Pinto, A., Faúndez-Vergara, R., & Mansilla-Quiñones, C. (2017). Politización de la crisis hídrica en Chile: Análisis del conflicto por el agua en la provincia de Petorca. Agua y Territorio, 10, 3614. https://doi.org/10.17561/at.10.3614

Pefaur, J. (2020). Evolución de la Fruticultura Chilena en los Últimos 20 Años. ODEPA, Oficina de Estudios y Políticas Agrarias, Ministerio de Agricultura.

Pellicciotti, M., Burlando, P., & Van Vliet, K. (2007). Recent trends in precipitation and streamflow in the Aconcagua River Basin, central Chile. Glacier mass balance changes and meltwater discharge (selected papers from sessions at the IAHS Assembly in Foz do Iguaçu, Brazil, 2005). IAHS Publ., 318, 17-38. https://www.mountain-waters.ethz.ch/Publications/Pellicciotti_et_al_IAHS.pdf

Piuzzi, B., Alvear, N., & Oyarzo M. (2013). Las condiciones de sequía y estrategias de gestión en Chile. Iniciativa de ONU-Agua para el “Desarrollo de Capacidades en apoyo a las Políticas Nacionales de Gestión de Sequías”. OMM, CNULD, FAO, UNW-DPC.

Prieto, M. (2015). Privatizing Water in the Chilean Andes: The Case of Las Vegas de Chiu-Chiu. Mountain Research and Development, 35(3), 220-229. https://doi.org/10.1659/MRD-JOURNAL-D-14-00033.1

Prieto, M., Calderón-Seguel, M., Fragkou, M. C., & Fuster, R. (2022). The (not-so-free) Chilean water model. The case of the Antofagasta Region, Atacama Desert, Chile. The Extractive Industries and Society, 11, 101081. https://doi.org/10.1016/j.exis.2022.101081

Quintana, J. (2000). The Drought in Chile and La Niña. Drought Network News, 71. https://digitalcommons.unl.edu/droughtnetnews/71

Quintana, J., & Aceituno, P. (2012). Changes in the rainfall regime along the extratropical west coast of South America (Chile): 30°-43°S. Atmosfera, 25(1), 1-22. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-62362012000100001

Rivera, A. Cassasa, G, Acuña, C., & Lange, H, (2000). Variaciones recientes de glaciares en Chile. Revista de Investigaciones Geográficas: una mirada desde el Sur, (34), 29-60. https://doi.org/10.5354/0719-5370.2000.27709

Rivera, A., Bown, F., Acuña, C. & Ordenes, F. (2008). Chilean glaciers as indicators of climate change. Terra Glacialis, 11, 193-207.

Rivera, J. A., Otta, S., Lauro, C., & Zazulie, N. (2021) A Decade of Hydrological Drought in Central-Western Argentina. Frontiers in Water, 3, Article 640544. https://doi.org/10.3389/frwa.2021.640544

Rodell, M. & Li, B. (2023). Changing intensity of hydroclimatic extreme events revealed by GRACE and GRACE-FO. Nature Water, (1), 241-248. https://doi.org/10.1038/s44221-023-00040-5

Rosenblüth, B., Fuenzalida, H., & Aceituno. P. (1997). Recent Temperature Variations in Southern South America. International Journal of Climatology, 17(1), 67-85. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<67::AID-JOC120>3.0.CO;2-G

Saavedra, F. A., Kampf, S. K., Fassnacht, S. R., & Sibold, J. S. (2018). Changes in Andes snow cover from MODIS data, 2000-2016. The Cryosphere, 12(3), 1027-1046. https://tc.copernicus.org/articles/12/1027/2018/

Sarricolea, P., Herrera-Ossandon, M., & Araya-Escobar, C. (2013). Análisis de la concentración diaria de las precipitaciones en Chile central y su relación con la componente zonal (subtropicalidad) y meridiana (orográfica). Investigaciones Geográficas: una mirada desde el Sur, (45), 37-50. https://doi:10.5354/0719-5370.2013.27595

Sen, P.K. (1968). Estimates of the Regression Coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63(324), 1379-1389. http://dx.doi.org/10.1080/01621459.1968.10480934

Sheffield, J., & Wood, E.F. (2011). Drought: Past Problems and Future Scenarios. Routledge. https://doi.org/10.4324/9781849775250

Slosson, J. R., Kelleher, C., & Hoke, G. D. (2021). Contrasting Impacts of a Hotter and Drier Future on Streamflow and Catchment Scale Sediment Flux in the High Andes. Journal of Geophysical Research: Earth Surface, 126(8), Article e2021JF006182. https://doi.org/10.1029/2021JF006182

Straffelini, E., Luo, J., & Tarolli, P. (2024). Climate change is threatening mountain grasslands and their cultural ecosystem services. Catena, 237, Article 107802. https://doi.org/10.1016/j.catena.2023.107802

Taylor R., (2009). Rethinking water scarcity: The role of storage. Eos, Transactions American Geophysical Union, 90(28), 237-238. https://doi.org/10.1029/2009EO280001

Valdés-Pineda, R., Pizarro, R., García-Chevesich, P., Valdés, J. B., Olivares, C., Vera, M., Balocchi, F., Pérez, F., Vallejos, C., Fuentes, R., Abarza, A., & Helwig, B. (2014). Water governance in Chile: Availability, management, and climate change. Journal of Hydrology, 519, 2538-2567. https://doi.org/10.1016/j.jhydrol.2014.04.016

Van Loon, A.F., (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392. https://doi.org/10.1002/wat2.1085

Van Loon, A.F., Gleeson, T., Clark, J., Van Dijk, A.I.J.M., Stahl, K., Hannaford, J., et al. (2016). Drought in the Anthropocene. Nature Geoscience, 9, 89-91. https://doi.org/10.1038/ngeo2646

Vicuña, S., Garreaud, R.D., & McPhee, J. (2011). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change, 105, 469-488. https://doi.org/10.1007/s10584-010-9888-4. https://doi.org/10.1007/s10584-010-9888-4

Vicuña, S., McPhee, J., & Garreaud, R. D. (2012). Agriculture vulnerability to climate change in a snowmelt-driven basin in semiarid Chile. J. Water Res. Planning Manage, 138(5), 431-441. https://doi.org.10.1061/(ASCE)WR.1943-5452.0000202

Vuille, M., Francou, B., Wagnon, P., Juen, I., Kaser, G., Mark, B. G., & Bradley, R. S. (2008). Climate change and tropical Andean glaciers: Past, present and future. Earth-Science Reviews, 89(3-4), 79-96. https://doi.org/10.1016/j.earscirev.2008.04.002

Vuille, M., Carey, M., Huggel, C., Buytaert, W., Rabatel, A., Jacobsen, D., & Stoffel, M. (2018). Rapid decline of snow and ice in the tropical Andes—Impacts, uncertainties and challenges ahead. Earth-Science Reviews, 176, 195-213. https://doi.org/10.1016/j.earscirev.2017.09.019

Wang, F., Shao, W., Yu, H., Kan, G., He, X., Zhang, D., Ren, M., & Wang, G. (2020). Re-evaluation of the Power of the Mann-Kendall Test for Detecting Monotonic Trends in Hydrometeorological Time Series. Frontiers in Earth Science, Sec. Hydrosphere, 8. https://doi.org/10.3389/feart.2020.00014

Wang, L., Zhang, F., Shi, X. A., Zeng, C., Ahmad, I., Wang, G. X., Thapa, S., & Xu, X. (2023). Water resources system vulnerability in high mountain areas under climate change. Journal of Cleaner Production, 403, Article 136789. https://doi.org/10.1016/j.jclepro.2023.136789

Waylen, P. R., & Caviedes, C. N. (1990). Annual and seasonal fluctuations of precipitation and streamflow in the Aconcagua river basin, Chile. Journal of Hydrology, 120(1-4), 79-102. https://doi.org/10.1016/0022-1694(90)90143-l

Webb, M.J., Winter, J.M., Spera, S.A., Chipman, J.W., & Osterberg, E.C. (2021). Water, agriculture, and climate dynamics in central Chile’s Aconcagua River Basin. Physical Geography, 42(5), 395-415. https://doi.org/10.1080/02723646.2020.1790719

Williams, A.P., Cook, B.I., & Smerdon, J.E., (2022). Rapid intensification of the emerging southwestern North American megadrought in 2020-2021. Natural Climate Change, 12, 232-234. https://doi.org/10.1038/s41558-022-01290-z

Williams, C. J. (2017). Climate Change in Chile: An Analysis of State-of-the-Art Observations, Satellite-Derived Estimates and Climate Model Simulations. Journal of Earth Science and Climatic Change, 8(5). https://doi.org/10.4172/2157-7617.1000400

World Bank (2020). Chile: Climate Data Projection. Climate Change Knowledge Portal. https://climateknowledgeportal.worldbank.org/country/chile/climate-data-projections

Wu, S., Bates, B., Zbigniew Kundzewicz, A. W., & Palutikof, J. (2008). Climate change and water. Technical Paper of the Intergovernmental Panel on Climate Change. Geneva.

Zúñiga, F., Jaime, M., & Salazar, C. (2021). Crop farming adaptation to droughts in small-scale dryland agriculture in Chile. Water Resources and Economics, 34, 100176. https://doi.org/10.1016/j.wre.2021.100176