Leucemia mieloide aguda: fisiopatología, clasificación molecular y pronóstico, revisión 2016

Autores/as

  • Héctor Foncea. Médico-Cirujano, Universidad de Chile.

Resumen

El propósito de esta revisión es resumir los aspectos esenciales sobre la fisiopatología, clasificación y pronóstico de la leucemia mieloide aguda (LMA), enfatizando la relación existente entre mutaciones puntuales y sobrevida esperada.

La LMA incluye un grupo de enfermedades que se caracterizan por una proliferación clonal de precursores mieloides y que resultan en manifestaciones clínicas diversas, como anemia, infecciones o hemorragias. Se postula que su formación sigue un proceso de dos pasos, en donde primero se perpetúan los precursores y luego se les confiere una ventaja replicativa. Los hallazgos citogenéticos actuales obligaron a renovar la clasificación de esta enfermedad y de esta forma, surge la clasificación 2016 de la Organización Mundial de la Salud.

Las nuevas técnicas moleculares han ayudado a categorizar a la LMA según su citogenética, lo que ha servido para otorgar pronóstico y mejorar el tratamiento.

Palabras clave:

leucemia mieloide aguda, fisiopatología, clasificación, citogenética, pronóstico

Referencias

(1) Walter MJ, Shen D, Ding L, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med 2012; 366: 1090-1098.

(2) Alteri R, Bertaut T, Brooks D, Chambers W, Chang E, et al. Cancer Facts & Figures 2016. 1ª ed. Atlanta. American Cancer Society. 2014.

(3) Juliusson G, Antunovic P, Derolf A, Lehmann S, Mollgard L, Stockelberg D, et al. Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 2009; 30; 113(18): 4179-87.

(4) Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin 2012; 62(1): 10-29.

(5) Catlin, S. N., Busque, L., Gale, R. E., Guttorp, P. and Abkowitz, J. L. The replication rate of human hematopoietic stem cells in vivo. Blood 2011; 117, 4460-4466.

(6) Li, L. and Clevers, H. Coexistence of quiescent and active adult stem cells in mammals. Science; 2010; 327, 542-545.

(7) Beerman, I., Maloney, W. J., Weissmann, I. L. and Rossi, D. J. Stem cells and the aging hematopoietic system. Curr. Opin. Immunol. 2010; 22, 500-506.

(8) Ostgard, L. S. G., Kjeldsen, E., Holm, M. S., Brown, P. N., Pedersen, B. B., Bendix, K., Johansen, P., Kristensen, J. S. and Nørgaard, J. M. Reasons for treating secondary AML as de novo AML. Eur. J. Haematol. 2010; 85, 217-226.

(9) Ding L., Ley T.J., Larson D.E., Miller C.A., Koboldt D.C., Welch J.S., Ritchey J.K., Young M.A., Lamprecht T., McLellan M.D., et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature. 2012; 481: 506-510.

(10) Gilliland DG, Jordan CT, Felix CA. The molecular basis of leukemia. Hematology. 2004; 80-97.

(11) Welch, J. S., Ley, T. J., Link, D. C., Miller, C. A., Larson, D. E., Koboldt, D. C., Wartman, L. D., Lamprecht, T. L., Liu, F., Xia, J. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012; 150, 264-278.

(12) Schessl C, Rawat VP, Cusan M, Deshpande A, Kohl TM, Rosten PM, et al. The AML1-ETO fusion gene and the FLT3 length mutation collaborate in inducing acute leukemia in mice. J Clin Invest 2005; 115: 2159-68.

(13) The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013; 368, 2059-2074.

(14) Liang D-C, Liu H-C, Yang C-P, Jaing T-H, Hung I-J, Yeh T-C, et al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A. Blood. 2013; 121(15): 2988-95.

(15) Green, C.L., Evans, C.M., Zhao, L. et al, The prognostic significance of IDH2 mutations in AMLdepends on the location of the mutation. Blood. 2011; 118: 409-412.

(16) Shen Y, Zhu YM, Fan X, et al. Gene mutation patterns and their prognostic impact in a cohort of 1185 patients with acute myeloid leukemia. Blood 2011; 118: 5593-603.

(17) Swerdlow SH, Campo Elías A, Harris NL. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4ª Ed. Lyon. IARC; 2008.

(18) Arber, D. A., Orazi, A., Hasserjian, R., Thiele, J., Borowitz, M. J., Le Beau, M. M., Bloomfield, C. D., Cazzola, M., & Vardiman, J. W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016; 127(20), 2391-2405.

(19) Felicetto Ferrara, Charles A Schiffer: Acute myeloid leukaemia in adults. Lancet 2013; 381: 484- 95.

(20) Corpora T, Roudaia L, Oo ZM, et al. Structure of the AML1-ETO NHR3-PKA(RIIα) complex and its contribution to AML1-ETO activity. J Mol Biol. 2010; 402: 560.

(21) Grimwade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010; 116(3): 354-365.

(22) Shurtleff SA, Meyers S, Hiebert SW, et al. Heterogeneity in CBF beta/MYH11 fusion messages encoded by the inv(16)(p13q22) and the t(16;16)(p13;q22) in acute myelogenous leukemia. Blood. 1995; 85: 3695.

(23) S. A. Pileri, S. Ascani, M. C. Cox et al., “Myeloid sarcoma: clinico-pathologic, phenotypic and cytogenetic analysis of 92 adult patients,” Leukemia. 2007; vol. 21, no. 2, pp. 340–350.

(24) Altucci L, Rossin A, Raffelsberger W, et al.: Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001; 7 (6): 680-6.

(25) Zelent A, Guidez F, Melnick A, et al.: Translocations of the RARalpha gene in acute promyelocytic leukemia. Oncogene. 2001; 20(49): 7186-203.

(26) Meyer C, Kowarz E, Hofmann J, et al. New insights to the MLL recombinome of acute leukemias. Leukemia. 2009; 23(8):14909.

(27) Chi Y, Lindgren V, Quigley S, Gaitonde S. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia: an overview. Arch Pathol Lab Med 2008; 132(11): 1835-7.

(28) Sandahl JD, Coenen EA, Forestier E, Harbott J, Johansson B, Kerndrup G, et al. t (6; 9)(p22;q34)/DEK-NUP214-rearranged pediatric myeloid leukemia: an international study of 62 patients. Haematologica. 2014; 99(5): 865-72.

(29) Bitter MA, Neilly ME, Le Beau MM, et al. Rearrangements of chromosome 3 involving bands 3q21 and 3q26 are associated with normal or elevated platelet counts in acute nonlymphocytic leukemia. Blood. 1985; 66: 1362.

(30) Gröschel S, Sanders MA, Hoogenboezem R, et al. A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia. Cell. 2014; 157(2): 369-381.

(31) Yamazaki H, Suzuki M, Otsuki A, et al. A remote GATA2 hematopoietic enhancer drives leukemogenesis in inv(3)(q21;q26) by activating EVI1 expression. Cancer Cell. 2014; 25(4): 415-427.

(32) Cheng EC, Luo Q, Bruscia EM, et al. Role for MKL1 in megakaryocytic maturation. Blood. 2009; 113: 2826.

(33) Hollink IH, Zwaan CM, Zimmermann M, Arentsen-Peters TC, Pieters R, Cloos J, et al. Favorable prognostic impact of NPM1 gene mutations in childhood acute myeloid leukemia, with emphasis on cytogenetically normal AML. Leukemia. 2009; 23(2): 262-70.

(34) Wouters BJ, Lo ̈ wenberg B, ErpelinckVerschueren CA, van Putten WL, Valk PJ, Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009; 113(13): 3088-309.

(35) Hollink IH, van den Heuvel-Eibrink MM, Arentsen-Peters ST, et al. Characterization of CEBPA mutations and promoter hypermethylation in pediatric acute myeloid leukemia. Haematologica. 2011; 96(3): 384-392.

(36) Ho PA, Alonzo TA, Gerbing RB, Pollard J, Stirewalt DL, Hurwitz C, et al. Prevalence and prognostic implications of CEBPA mutations in pediatric acute myeloid leukemia: a report from the Children’s Oncology Group. Blood. 2009; 113: 6558-6566.

(37) Konoplev S, Yin CC, Kornblau SM, et al. Molecular characterization of de novo Philadelphia chromosome-positive acute myeloid leukemia. Leuk Lymphoma. 2013; 54(1): 138-144.

(38) Nacheva EP, Grace CD, Brazma D, et al. Does BCR/ABL1 positive acute myeloid leukaemia exist? Br J Haematol. 2013; 161(4): 541-550.

(39) Schnittger S, Dicker F, Kern W, et al. RUNX1 mutations are frequent in de novo AML with noncomplex karyotype and confer an unfavorable prognosis. Blood. 2011; 117(8): 2348-2357.

(40) Mendler JH, Maharry K, Radmacher MD, et al. RUNX1 mutations are associated with por outcome in younger and older patients with cytogenetically normal acute myeloid leukemia and with distinct gene and MicroRNA expression signatures. J Clin Oncol. 2012; 30(25): 3109-3118.

(41) Yanada M, Matsuo K, Suzuki T, et al.: Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations for acute myeloid leukemia: a meta-analysis. Leukemia. 2005; 19 (8): 1345-9.

(42) Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Am Soc Hematol Educ Program Book. 2013; (1): 220-6.

(43) Haferlach, C., Alpermann, T., Schnittger, S. et al, Prognostic value of monosomal karyotype in comparison to complex aberrant karyotype in acute myeloid leukemia: a study on 824 cases with aberrant karyotype. Blood. 2012; 119: 2122-2125.

(44) Schlenk RF, Taskesen E, van Norden Y, et al. The value of allogeneic and autologous hematopoietic stem cell transplantation in 116. prognostically favorable acute myeloid leukemia with double mutant CEBPA. Blood. 2013; 122(9): 1576-1582.

(45) Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013; 40(6): 666-75.

(46) Walter RB, Othus M, Burnett AK, Löwenberg B, Kantarjian HM, et al. Significance of FABsubclassification of "acute myeloid leukemia, NOS" in the 2008 WHO classification: analysis of 5848 newly diagnosed patients. Blood. 2013; 28; 121(13): 2424-31.

(47) Yamauchi K, Yasuda M: Comparison in treatments of nonleukemic granulocytic sarcoma: report of two cases and a review of 72 cases in the literature. Cancer. 2002; 94 (6): 1739-46.

(48) Solh M., DeFor T.E., Weisdorf D.J., Kaufman D.S. Extramedullary Relapse of Acute Myelogenous Leukemia after Allogeneic Hematopoietic Stem Cell Transplantation: Better Prognosis Than Systemic Relapse. Leuk Lymphoma. 2013; 54(3): 665–668.

(49) Mateos MK, Barbaric D, Byatt S-A, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Translational Pediatrics. 2015; 4(2): 76-92.

(50) Puga B, Pilleux L, Guerra G, Undurraga S, Lois V y col. Leucemia en personas de 15 años y más. 2ª ed. Santiago. Ministerio de Salud. 2010.

(51) Mrózek K, Marcucci G, Nicolet DJ, et al. Prognostic significance of the European LeukemiaNet standardized system for reporting cytogenetic and molecular alterations in adults with acute myeloid leukemia. J Clin Oncol. 2012; 30: 4515.

(52) Grimwade D. The changing paradigm of prognostic factors in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2012; 25(4): 41925.

(53) Marcucci G., Haferlach T., Dohner H. Molecular genetic of adult acute myeloid leukemia: Prognostic and therapeutic implications. J. Clin. Oncol. 2011; 29: 475-486.

(54) Carolyn S. Grove, George S. Vassiliou. Acute myeloid leukaemia: a paradigm for the clonal evolution of cancer? Disease Models and Mechanisms. 2014; 7: 941-951.

(55) Marcucci G, Geyer S, Zhao W, Caroll A.J, Bucci D, et al. Adding KIT inhibitor dasatinib to chemotherapy overcomes the negative impact of KIT mutation/over-expression in core binding factor acute myeloid leukemia. Results from CLGB 10801. Blood. 2014; 124: 8.

(56) Tang J.L., Hou H.A., Chem C.Y., Liu C.Y., Chou W.C., Tseng M.H. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alternations. Blood. 2009; 114: 5352-5361.

(57) Wouters B.J., Lowenberg B., ErpelinckVerschueren C.A., van Putten W.L., Valk P.J., Delwel R. Double CEBPA mutations, but not single CEBPA mutations, define a subgroup of acute myeloid leukemia with a distinctive gene expression profile that is uniquely associated with a favorable outcome. Blood. 2009; 113: 3088-3091.

(58) Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011; 17: 330-9.

(59) Chou W.C., Chou S.C., Liu C.Y., Chen C.Y., Hou H.A., Kuo Y.Y., Lee M.C., Ko B.S., Tang J.L., Yao M., et al. TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood. 2011; 118: 3803- 3810.

(60) Gilliland D.G., Griffin J.D. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002; 100: 1532-1542.

(61) Paschka P., Marcucci G., Ruppert A.S., Mrozek K., Chen H., Kittles R.A., Vukosavljevic T., Perrotti D., Vardiman J.W., Carroll A.J., et al. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): A cancer and leukemia group B study. J. Clin. Oncol. 2006; 24: 3904-3911.